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A fundamental property of analytic functions of a complex variable is the in-
variance of the contour of an analytic function relative to the integration path,

This property permits the integration contour to be deformed in the domain of
analyticity without changing the value of the integral, It is of interest to seek
similar invariant integrals in other problems of mathematical physics, not re-
ducing to the planar problems of potential theory,

In this paper a system of energy integrals ( T -integrals) has been construct-
ed for a continuous medium with arbitrary rtheological and electromagnetic pro-
perties (Sect, 1), Next, a general theory is proposed for the motion of the sing-
ularities based on the invariant F-integrals (Seet,2), The following questions
are examined as s ome special cases of this theory: breakdown of dielectrics by
an electric field (motion of charges and currents, Sect, 3); drag of a body in
ideal incompressible fluid flow (motion of dipoles, vortices and sinks in an ideal
fluid, Sect, 4); motion of cracks and dislocations in elastic bodies (Sect. 5) etc,

1 ,Invariant T'=integrals in the case of an electromagnetic de~
formable medium,Let us consider a deformable continuous medium located in
an electromagnetic field in the most general case of interaction of field and medium
(the electromagnetic field causes a deformation of the medium and, conversly, a de-
formation of the medjum generates an electromagnetic field), The state of an electro-
magnetic deformable medium is characterized by the field vectors E B,D H the dis~
placement vector u and the stress and strain tensorsixand €43, The following equa-

tions hold;
Maxwell*s equations (.1

8B, ap,
el K-+ -—bnt—L =0, eguHjx— ——&3—- =J;

Dii=p, Bii=0, Jiit2-0

Newton's equations (1.2

g,y = 6u{‘
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kinematic conditions for small deformations
(1.3)
285 = Uy; + uy,

local energy conservation law (1.4)
U =q; + E:Dy + H;B; + 048"
Here J is t he cument density vector, P is the charge density, § is the density of the
medium, ¥; are fixed rectangular Cartesian coordinates, ¢ is time, { is the uncom~
pensated heat flow vector, [J is the rate of change of the internal energy of the med-
ium in a unit volume;'the dot denotes the total time derivative; 8195 = 8937 = E339 =
1,8132= €39, = 893 = —1,all other €;j; equal zero, For simplicity, the deforma-~
tions of the medium are assumed small, (What follows can be generalized to finite de~-
formations as well.)

All functions occurring in these equations are assumed to be continuously differenti~
able the requisite number of times, with the exception of singular points, singular lines
and singular surfaces on which these equations become meaningless, By 2 we denote
a certain surface in the I3%9%s -space, We consider the following integrals over

surface %
[lintegrals of the first kind

e 1 . (1.8)
Ty = \[(3-}— F+— ﬁuiui>m +
>
(D;Ex + BiHy — Oijuj x — 44, k) ni] ax
I'-integrals of the second kind
1 (1.6)
Pk! = S[(Q + F + “'2"“' 6”{”{) {nk +
¢ .
f])iEk + B{H& — O'ijuj, kg, k),{ n{l ax
T-integrals of the third kind wn

Thym = S[(Q 4 F 4o 6ui'ui'>’lm g -+
b3
(D:Ex + B;Hy — 035u5,x — ¢, rg),mn«i] as

etc, Here 9 and F denote the following potentials & = U — E;D; — H,B,

P, |
F== S[ 5 1 PEi + SijkjjBk]dxi (1.8)
(grad}? = _%P;"-" pE —J X B>

P, =epBiDy (P=BxD)
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In formulas (1, 5)(1. 8) the charge density p is taken as constant, We adopt the us-
ual rules of index notation for summation and differentiation (for example, u;'u;’ =
u? + uy® 4 ug®, Uy = 0uy/ 0z, etc,), It can be shown that the equality

I‘Ot( +PE+1><B)—~—O

holds on the basis of Eqs, (2,1) if ‘P =const, The following theorem holds being an
analog of the Cauchy theorem for the given physical system,

Theorem 1,1, Ifi a) the surface 2 is closed; b) all functions involwef in Eqs,
(2. 1)~(2, 4) are differentiable everywhere in a domain V, surrounded by contour 3;
¢) P = constand § — const everywhere in domain V, thenthe I ~integrals of
any kind equal zero,

We prove this theorem at fisst for T ~integrals of the first kind, We transform
the surface integral (1, 5) into a volume integral

(L9
1 .
Ty = g[(f) -+ F+"2_6uiui ),x+
v
(DiEx + B;Hp— ou5 x — ¢, x),i|dv
It can be shown that the following equation (1.10)

S U,k — @i, xs — EiDi, x — HiBj, k — 035,51 dv =0
v

stems from the local energy conservation law (1,4), Now we transform the integrand
in formula (1,9) using formulas (1, 1)~(1.3), (1.8) and (1, 10), We obtain
(1.11)

(9 + F+ -—%—Ga{u{) o T (DiEx -+ BiHx — iU,k — i, 1), i =
Dy (Ex,:— By x) + Bi (Hx, s — Hy, 1) — ey (BiD;) —
erijliBj + Oui'uy, k — (0ujus, 8),5 + OusBis x =
[Di (Ek, i— Ei, k) -+ 8Ri5D§simnEm, al +

[B; (Hx,: — Hi, x) — eijBi8impH p, ]+
erij (Bif; — BiJ3) + ui, x (8u;” — 05, ;)= 0

Here in the transformations we allowed for the following identity

kij€imn = Ognbjm — Smbin
(6in= 1 opu j = n; 61'1; = 0npnj:;=n)

and for the skew-symmetry of g;;.
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The theorem has been proved for I' -integrals of the first kind, Obviously, from the
proof presented it also follows that it is valid for [ -integrals of any kind, since their
integrands in the transformed volume integrals are certain derivatives with respect to
the coordinates of expression (1, 11), The following theorems on the invariance of T°
-integrals ensue immediately from the theorem proved,

Theorem 1,2, [I'-integrals donot change their values along any closed sur-
face 3, surrounding a singular point, a singular line or a singular surface, The surface
2 can be arbitrarily deformed without changing the values of the T -integrals, if
in the deformation the surface 3 does not intersect a singular point, a singular line

or a singular surface,

Theorem 1.3. If a nonclosed surface ¥ is bounded by a spatial contour L,
then the T’ -integrals do not change their values under any deformation of the surface

Z if; a) contour [ is fixed, b) in the deformation the surface ¥ does not inter~
sect a singular point, a singular line or a singuiar surface,

Strictly speaking, the Theorems 1,1~1,3 and their proof are valid only for revers-
ible, quasistatic (nondissipative) systems, as well as(for E=l=m= ...= 1)for
steady~state processes in the moving coordinate system x =2 — Vit§ ;+  for any
arbitrary nonreversible (dissipative) system, However the theorem can be applied in oth-
er cases with some additional assumptions (for details see Cherepanov, G,P., Mechan-
ics of Brittle Fracture, McGraw~Hill Inc,, N,Y,, 1978).

The results obtained earlier (see [1]) for a deformable medium in the absence of an
electromagnetic field are derived from this as obvious special cases when E = 0, D
=0,H=0,B=0.

2, General theory of motion of singularities, Let us consider
an isolated singular point O inside some domain V: Dy definition, all the unknown
functions are differentiable everywhere in the domain V, except at the point O, at
least some of them become infinite, Being infinite has no physical meaning and indica~-
tes that the mathematical theory describing the behavior of the given physical system
is inaccurate, Figuratively speaking, all the errors and deviations of this theory from
reality are concentrated at the singular points, The value of the integral I'; does not
depend upon the choice of the closed contour = (if it only surrounds point () and lies
in domain V'), In particmar as 3 we can take a sphere of arbitrarily small radius
with center at point (),

Let us assume for ¢ >» £, the singular point () starts to move in space with
velocity Vv (thes tate of point O up to the instant £ = fs is of no significance),
We select a moving system of Cartesian coordinates zy'zy'xy”  with center at point

0. 1In the moving coordinates all I -integrals preserve their form if we make the
change z; — z;/ and u;" — u; — v;;  all the theorems in Sect, 1 remain val-
id for the surface 3 (a small sphere, for instance) in the moving space Qix,'zy'%s' «
As the singular point moves by the distance dr = vdt, the extemal field (described
within the framework of the given theory) does the work dA.. The magnitude of this
work is comnected with I' -integrals of the first kind in the following way:

dA = Tidx; (dvi=vid?) (2.1
or ', = 84/0z;. The quantity T'; has the dimension of a force. Thus, the
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physical meaning of a I -integral of the first kind is the following: the magnitude
of TI'; equals the irreversible work of the external field under the motion of a singu-
lar point by a unit of length along z,.
The energy dissipation rate at the singular point is

A =Ty (2.2)
The question is, for what values I‘; of the energy flux and in which directions does
the motion of the singular point commence? We answer this question using the tools of
thermodynamics. We apply two basic approaches.

A, We assume that in the three-dimensional space (T'y, I'y, I's) there exists a
surface & (I'y, T, T'y) = 0, separating the whole space into two domains; an in-
terior one and an exterior one, If a point (I'y, Ty, I's) is in the interior domain,
then the singular point in the physical space does not move; as soon as a point (T';, T,

T'5) passes onto the surface ,§, the motion of the singular point in the physical
space begins; the exterior domain is inaccessible, In this case the velocity of the sing-
ular point is determined from the maximum principle for the energy dissipation rate,
which leads to the following expression:

v; = A dS/oT; (2.3)

where A is some unknown function. Expression (2,3) determines the direction of the
motion of the singular point,

This version of the construction of the theory is analogous to the theory of ideal
plasticity; formula (2, 3) is analogous to the associated flow rule, In casel', = I'; =
with TI;<<Ty -, the singular point is stationary; it starts its motion whenT', = I',,.

B, We assume that a dissipation function D) (T'y, I'y, T,), exists, being a ho-
mogeneous function of first degree of its arguments, In this case, in accord with (2, 2)

we have V; = OD/aPi (2.4)

This version of the construction of the theory is analogous to the theory of nonlinearly-
viscous bodies, In this case the motion of the singular point takes place for arbitrary
values of T, T, T,.

More complex synthetic models are possible for the motion of the singular point
in physical space, combining the limit state and the viscous flow. The functions S
and D are subject to determination from experimental data, or else from structur-
al theory revealing the nature of the singular point, In the simplest and frequently en-
countered case when Iy =T, = 0, and », = vy = 0,y we obviously have

oy = (Ty) (2.5)

Here the function f(rl) is determined from experiment or else from structural physi-
cal theory,

Let us now consider some point O on a singular line, We select a local coordin-
ate system with center at point O, and we direct the 3 -axis along the line, For

t > t, let the singular line begin to move in someneighbourhood of point O
in space with velocity v (v, Uy, 0).  Having taken as £ some cylindrical surface
whose axisis the singular line, we can show that formulas (2, 1) and (2. 2) are valid in
the case given for ¢ = 1, 2, ; ako dA and T, are line densities of the corres-
ponding quantities at point O (i.e., are referred to a unit length of the singular line).
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The dimension of I'i is that of force divided by length, To determine the motion of
the singular line, we can bring in the same mode} as before (in particular, model (2.3)-
(2.5) for the corresponding cases with i = 1, 2).

Finally, we consider a singular surface (usually this is a surface of discontinuity on
which at least some of the unknown functions undergo a jump), We select a local coor-
dinate system with center at some point O on the surface of discontinuity and we dir-
ect the Z; -axis along the normal to the surface. For ¢ > f, let the singular sur-
face move in some neighbouthood of point () in space with normal velocity V1. The
formula dA = T'ydr;, is valid here, while the quantities dA and T, are surface
densities at the point O (i.e,, are referred to a unit area of the singular surface). The
dimension of I is that of force divided by length squared. The general theory of mo-
tion of a singular surface is completely laid out in formula (2, 5); in the simplest case
we cantake I, = D, where ] is some constant of the material (as in explosion
theory, see [1D.

Invariant I' -integrals yield a powerful technique for the construction of new phy-
sical theories and for the unification of old ones,

3. Electrical breakdown. Let us consider an electric field in vacuum
or in a dielectric, In this case

J—“—‘:O,Q:O,qi—”&O,Di:SQEi,BiT:O,HiSO,ui——":o (3.1)

where €o is the dielectric constant of vacuum or of the dielectric (depending on the
system of units), According to (1,5) the invariant T' -integrals of the first kind in this
case are

Ty = _%j_ S(._. EEing + 2E;Exn;) d3 (3:.2)
b

Maxwell's equations reduce to

Ei=—q i @4 =0 (3.3)

Let us consider the fundamental forms of singularities. Everywhere in what follows,
as a rule, the cumbersome calculations of the invariant T -integrals are omitted and
only the final result is presented,

Point charge in the field, The field in the neighbourhood of a point char-
ge at the origin has the form

(3.4)

ex .
T N
— Eyx;, E;= e + Ep (2=x2)

_ 4
P = 4Arggr
Here the first term is the self-field of the charge and the second term is the external
field (the succeeding terms of the expansion are unessential), In this case
Ty = eEw _(3‘5)
Thus, here the L'k are the components of the force with which the external field acts
on the charge (if this charge is displaced by a unit of length along =z, , the energy I,
is dissipated),
Dipole in an external field, Let the field have the form

m.x, (3.6)
¢ = T:T;;r_f — Eiox; — dinZiTk
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Here ; are the components of the dipole moment and Ko and dix are certain
constants; the first term is the self-field of the dipole and the second and third terms
represent the external field (the succeeding terms of the expansion are unessential),
In this case we have Ty — 2midyy -
Consequently, the components Ty of the force with which the external field acts on
the dipole are determined by the dipole moment and the derivatives of the strength
of the external field at the origin, In the derivation of (3, 7) we made essential use
of the assumption that the characteristic structural length of the dipole is small in com=
parison with the radius r of sphere X, If the dipole is displaced by a unit of length
along Zy the energy I', is dissipated, A multipole of any order can be analyzed com-
pletely analogously.
Towards a theory of lightning (of discharge)., Letsome probe

(which is in the form of a thin dielectric rod) carry a charge ¢ at its endpoint,
We place the endpoint of the rod in an extemal field of strength E (in the ab-
sence of charge €). The question is: under what conditions does a discharge (light-
ning) occur, i.e,, the charge leaves the probe? On the basis of the general theory
of motion of singularities (Sect, 2) the answer to this question is the following: when

e|E| << T,, adischarge does not occur, while the inequality e[E |> T, is
impossible, i.e,, the condition for the discharge is

¢ (B + E? + Eg?) = I? @.8)

Here I, is some local constant of the endpoint probe, characterizing the electrical-
strength properties of the surrounding medium, of the probe and of their contact, as
well as the geometry of the endpoint probe, For a given probe and a given external
medium the constant I can be determined from one experiment of the discharge
with a given charge in a given field E . In deriving condition (3, 8) from (2, 3), we
assumed that the external medium in the neighborhood of the endpoint probe is isotop=
ic with respect to its resistance to the discharge, i,e,, all directions are equivalent,
From this assumption it follows that the limit state surface S {I'y, Ty, T'y) in
{2.3) is a sphere, (This argument relates also to the general case of the singular points
of the field (Sect, 2),) Hence follows (3, 8). In accord with (2, 3), the direction of the
discharge in this case coincides with the direction of the vector E, The velocity of
motion of spherical lightning is negligibly small in comparison with the velocity of
line lightning, Therefore, we can assume that spherical lightning is some multipole
whose structure is as yet unknown,

Line charge, Suppose that a charge is distributed uniformly along the line
x; = Z, = 0  with density g. The field in the neighborhood of this line has
the form

qr;
E; = eyt +Ep (i=1,2 rP=zmx)

In this case
Ty = gby, (k=1,2)

Consequently, the I'y again are the components of the force with which the external
field acts on a unit of length of the line charge,
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Vortex line. The field close to the vortex ; = & = 0 (solenojdal
coil) has the form
wx,
By = — b LBy, Ey= ;::?2 + By

(Eo ES iEm -+ ngo, ta ¢ = x,/xl, = ;i i = 1, 2)

Here w is the circulation of vector E of the field { w = wk  is the Vector of
the vortex), In this case

I'= Tii + Tyj = e, (W X E,) (3.9)

Thus, a force I, defined by the formula (3, 9) acts on the vortex line, A vortex line
corresponds to the presence of a concentrated magnetic flux wik of vector B along
the &5 -axis (in the core of the coil), If in the case of a line charge with Z; =

%y = U, considered above, the cbserver is moving along the z, -axis at a constant
velocity » , then he sees only the magnetic field

I Tz
Hl"*‘—"—g-:;zz——i‘ﬂmv sz—fﬂ—:‘i‘%‘Hzo

(Jx 'S'?—(;vk”r =-§q~°~v,Hg = H10i+ Ifﬁﬂj)

where S, is the area of the cross section of the line charge, In this case

=T+ I,j = pe (J X Hy)

where H, is the external field of vector H on the z, -axis in the absence of current
J, and o is the magnetic permeability of the medium, Formula (3, 10) is found

from the expression for I, in a magnetic field; this expression can be obtained from

formula (3,2) by replacing £; by H; and & by Mo (where B; = poH;).

All the results, obtained in Sect. 3, regarding the computation of forces and energy
dissipation for the singularities with the aid of invariant r ~integrals generalize easil~
y to bodies of arbitrary form and connectivity if their typical linear dimensions are smail
in comparison with the radius of the sphere or cylinder X. Otherwise, it is necessary
to apply the general formula for [ -integrals (for example, formula (3.2) in an electro-

static field), where the surface of the body can be taken as 3 .

Lifting force in an electrostatic field. Let us consider a homogene-
ous electrostatic field in a plane condensor, In this field let there be a cylindrical body
with a cross-section of the type of a Joukowski profile or a turbine blade (the chord of
the profile is inclined at some smail angle to the direction of the tension vector), We
assume that the body material is an ideal insulator. Then around the profile a vortex
field of vector E arises and a lifting force I', determined by formula (3. 9) acts on
the profile (see Fig. 1), The magnitudeofthe curl w can be determined from the cond-
ition of boundedness of vector E at the sharp edge of the profile, This effect obtains
a well for nonideal dielectrics (however, to a lesser extent), In principle, it can be
used for a direct transformation of the electrostatic energy of the field into mechanical
energy energy of rotation of a turbine, if we use a lattice (grid) of profile~shaped blades
(as in a hydroturbine) in a sufficiently strong field E. A lifting force of the same or-

(3. 10)
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igin can act on uncharged oblate particle in an electric or magnetic field,

Z LLLLLLLLLLL

LLLLLLLILLLLLL L LLLLLL LI L Pt I,
=% fo
r
f £ 0 4
7 =0////// IV ¢=0
rave 4 Va4
Fig. 1 Fig, 2

Thin dielectric sheet in an electrostatic field., Leta thin plane
sheet made of an ideal dielectric be placed in a plane condensor parallel to its plates,
In this case the edge of the sheet is a singular line of the field E,  We introduce the
Cartesian coordinates z,z, with origin at some point O of the edge of the sheet
where Z2 is normal to the sheet and Z; is normal to its edge contour (Fig, 2). The
field close to the edge of the sheet is

K . K P
E = — ———SIn—_=, E = ————C08 ——
! o 2 2" Vaar 2

(R=z2,tg¢=29/2,,i=1,2)

Here K is the field intensity coefficient at the given point (; it is determined from
the solution of the problem as a whole, In this case we find

I‘l = -——1/280K2, I‘g == 0

Consequently, a concentrated longitudinal tensile force of intensity Ty s applied to
the edge of the dielectric sheet (as though force lines of the field were attracting the
edge of the sheet to themselves), In accord with Sect, 2 the collapse of the sheet starts
at some critical value of coefficient K.  The field energy decreases as the edge of
the sheet moves in the condensor,

All the models constructed can be used for a theoretical description of diverse phen-
omena of breakdown in strong electric and magnetic fields (discharge of condensors,
of the insulation in conductors, coils, etc,). The methods used for computing the for-
ces acting on charged bodies, close to the method of Maxwell were already developed
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in the past century, Subsequently, this method was forgotten (for instance, it is not pre~
sented in [2]), while a simplephysical formalism, based on a representation of interac-
tion energy, came to be applied for computing the forces, This formalism consists in
the rejection of the infinite self-energy of a point source when calculating the energy
of the system (the force is defined as the gradient of the energy of the system), The para-
dox of the divergence of the energy (*) under such an approach is logically insuperable,
As we see the application of invariant I' -integrals emables us, in particular, logically
and correctly to resolve the paradox of the divergence of the energy and to give a rigor~
ous justification of the formalism indicated,

4, Invariant I -integrals {n hydrodynamics, We limit ourselves
to the analysis of steady~state flow of an ideal incompressible weightless liguid, deserib-
ed by the equations

P =0, vi=09; p=p,—dvw (=123 &I
Here@, v;and pare the flow potential, the velocity components and the pressure in

the liquid, and p, is the pressure at a critical point of the flow, In this case the in-
variant I «-integrals are

4.2
F;: === % § S {—' U0y - 2v§nifik) a3 ( )
S
Ly = %‘ b S [— wwi)ine + 2 ()] d2 .3

s

o}
e

etc, It is not difficult to see that the quantities I'y equal the corresponding components
of the force acting on a body placed inside a closed surface y in the flow of the liqu-
id (for undetached flow),

Let us consider some examples,

Source in liquid flow,. Let the flow field be formed by superimposing a sour-

ce field g, on the unperturbed flow

9%
v =g b (P=wEy, i=1,2,3)

In this case we have

Ty = — 8qyogy (s = 1, 2, 3)

Thus, a source moves against the flow and a sink with the flow,
Dipole in liquid flow. Let the flow field have the following form;
¥y
P = Zmm — VioT — Gyt T
Here the first term is the self-field of the dipole with the moment (my, mg, m3), and

*) To resolve this paradox for an electron, Landaand Lifshits introduce the assumption
of an infinite negative mass of an electron of nonelectromagnetic origin (see p, 123 in{2]).
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the second and third terms represent the unperturbed external field, In this case we have

Iy =208 mdix (4.4)
Thus, the components Ty of the force with which the external field acts on the dipole
are determined by the dipole moment and the gradient of the velocity of the unperturb~
ed flow,

Flow past a body, The self-field of a body in a flow at distances large in
comparison with its size, is a dipole in the case of undetached flow, Therefore, by de-~
forming the contour X, . we arrive at formula (4, 4) for the resultant forces acting
on the body in the flow, In particular, if the unperturbed flow is homogeneous, i.e.,

d;x = 0, weobtain Tj=g0 (the d'Alemebert-Euler paradox), In models
with a reverse flow (of the type of the Efros-Gilbarg-Ross model) the body experiences
a drag which can be found with the aid of T -integrals, By deforming the closed sur-
face 3 in integral (4, 2) from a sphere of infinite radius into the frontal surface of
the body plus the surface of the cavity, we obtain the following expression for the drag

# of an axisymmetric body under a stalled axisymmetric cavitational flow with re-
verse flow:

F:——évg-—{'g-i 14 PP
et sf(-f-Q-i- 14+Q) |Q=—rr"F—

1/ 25?)30

Here B, and », are the pressure and the velocity of the unperturbed flow, p. is the
pressure in the cavity, & is the asymptotic cross section of the reverse flow and S
is the frontal section of the body. With the aid of invariant T -integrals we can al-
so obtain a number of known classical results (for example, the Levi-Civita formula
for the flow past a body with an infinite cavity, the thickness of the jet in a Borda or-
ifice, the Cisotti effect, etc,),

Vortex in a liquid flow, Let the flow field have the form

P i T, St .
1= Snre 1 Vs 2= Te +veg, v3=0

(r? = zy2;,i = 1,2)

Here the first term is the self-field of the vortex #1 = 22 = 0,  the second term is
the unperturbed flow and w is the circulation of the vector v.  In this case
(4.5)

P=P1i-f~r2j=éw(kxv0)
(Vo= 101 + vyj)

By deforming the contour X in the p -integral (4.2), we obtain the following re-
sult: under a circulational flow past a cylindrical body of arbitrary section, the Iift-
ing force is determined by formula (4, 5) (Joukowski's theorem),

6. Theory of cracks and dislocations in elastic bodies,
The invariant T ~-integrals of the nonlinear theory of elasticity have the form
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Te= S[(U + ";— 5u{u,»') L Gijui,xn,] dZ 5.1)

=

Ty = S [(U + %— 6ui'ui'>, e — (T4, 1), 1 n]-] X  (5,2)

3

ete, Let us consider the basic types of singularities of an elastic field,

Concentrated force on the free boundary of a haifspace, Let
a homogeneous isotropic lineasdy elastic halfspace %3 >> 0  be subjected to a con-
centrated force (P,, 0, 0), applied at the origin, The elastic field in the neighbor-
hood of the origin has the following form:

{5.3)
b = Pa[ S+ S — S e
Ampas = Pli‘;@-[-;.% - '{3”:}2—:;:{] + @ay
drpug = Py *'? (“‘g— + 1,___;3:; ) 4 agpry (P =)

Here (U1, uy, Ug)is the displacement vector, M is the shear modulus, Vv is the

Poisson's ratio, @ are constants determining the unperturbed external field. The first

term with factor P,is the self-field of the concentrated force, In this case we have(®)
(s.4)

p2 v 8¢t +2v) , 5 St
FIS e EZ—I;L—{&}\IET 5_(1—-*—2\7) + 8 “‘2‘ 10]—%‘

1 3 )
(1 — V) ags + Vas — (@12 -+ Ga1) (T(}“ + ")}

P (3.7___.?_v M_Z...vz)
Iy = Bk (1 —2v) \24 20 3

Concentrated line force inside a body. Let the elastic body be a
thin plate located in the plane z, == (0. A longitudinal concentrated force (P,, P,)
per unit of the thickness of the plate is applied to the plate at the origin. Let the elas-
tic field in terms of the complex Kolosov~Muskhelishvili potentials @ (z)and ¥ (2)

have the form
P+ iP,

T In(d %)

Py—iP ,
P(z) = %HIHZ 4 (By4-iBy)z

. 3—w
(Z—xl—{—lxg, WK = m)

P(z) = Inz+4 (A +ids)z (5.5)

*) A, S, Bykovtsev computed (5.4)



409

Invariant P-integrals and some of their applications in mechanics

Here 4: and B are real constants determining the external unperturbed field; the
first term is the self-field of the concentrated force, In this case we have (™)

; (5. 6)
Ty - ZE¥ (1@ — 4v) 4y — By) Py + [(h — i) Ay + Bl D3}
Fg = 1}{;\’ {[(2 “—4’V)A1+Bl] P2+[“4(1*V)A2 "i" B'Z] pl}

Theory of the strength of rivets, Let a thin plate be attached at the
origin to another elastic body (a rod, a plate or a massive body). This joining of elas~
tic bodies shall be called riveting for concreteness; however, we should bear in mind
that the theory being proposed refers to any technological operation or method of attach-
ment as long as the size of the rivet is small in comparison with the typical dimensions
of the body, We assume that the rivet has sufficient strength so that the fracture (or lim~
it state) under sufficiently large loads takes place close to the rivet in the plate, On the
basis of the general theory in Sect, 2 the condition for the fracture is the following (here
we used the condition of isotropy with respect to strength):

T2+ 1*22 = I? D
where I'; and T, are given by (5.6) and I is some local constant depending on
the construction of the rivet and method of attachment and on the local strength of the
plate, The quantity I'; is independent of the external field, the geometry of the plate,
the loads, etc.; all'these factors enter into the left-hand side of (5.7,). The value of

I'; must be determined experimentally, An analogous theory can be developed for
the fracture of the attachment to a massive body, by using the formula (5, 6) and the
general theory in Sect, 2,

Linear dislocation, Letan elastic body, finding itself in a state of a plane
state of stress or strain, contain a dislocation along the line 1 = ¥, = 0. Let
the elastic field close to the origin of the plane  Z1%; be

(5.8)
ot = HE s (4
P(z)= — %lnz 4+ (B1+iBy)z
(z = 7y + ixg)

Here (b1, 62) is the Burgers dislocation vector, u is the shear modulus; the first
term is the self-field of the dislocation and the second is the unperturbed external field,
In this case we have
(5.9
I, = b,B, + b,(24, + By, Ty = by(—24, + B;) — b.B,
The quantitites 4,, B,, B, have the following physical nreaming

[+
Ay =Y (0, + 0y°)y, By =1 (0° — 04°), B, = 0y

**) L, A, Kipnis computed (5, 6)
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Here 01,°, 0y, and 022° are the stresses of the unperturbed external field at the ori~
gin, Using (5, 10), formula (5. 9) can be written as

Fi w= 8i530'jk065 (5.11)

This is the well~known Peach-Kochler formula for the configurational force acting on
a dislocation, Dislocation theory is based on it,

In accord with the general theory in Sect, 2, the motion of a dislocation takes place
as soon as the absolute value of vector I, equalto VT‘?I—‘:, reaches a critical val-~
ue I, lying on the limit polar S (I',,Ty) (which is found from experiment), In case
of isotropy the polar is the circumference of a circle and the magnitude of [ does
not depend upon the direction of motion of the dislocation, However, if the direction
of the motion of the dislocation is known from experiment, then the magnitude of I,
equals the dissipation of the field energy as the dislocation moves in the direction in-
dicated by a unit of length (this magnitude is determined by experiment or from struc-
ture theory), The kinetics of the motion of dislocation in time under a constant extern-
al load must be described within the framework of the dependence of the vector v
on the vector I’ (see Sect,2),

Cleavage cracks, Let the front of a crack in an elastic body coincide with
the line &, == &, = (. The edges of the crack along 1z, = 0 and Z: << 0 are free
of external loads (cleavage crack), The conditions of plane strain or of plane state of
stress are assumed. Let an elastic field close to the crack front have, in the complex
potentials @ {z)and Q (z) , the form

. (L)
K iK
20 Q(z) = —L_ - 11
(2) + Q(z) Tor Q (z) Tere
{z = oy} i%y)
Here Ky and Kjyy are stress intensity factors, In this case
1 . X (M)
I'=— %;}; {K:® + Kn®)i— 2K1Kj)

The theory of crack development is obtained from the general theory of motion of singu-~
larities (Sect, 2) as a special case, Invariant I -integrals have been used also for de-
scribing the motion of a singular fracture surface in the theory of the effect of explosions
in brittle bodies [1],
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