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A. ~udame~tal property of analytic fuuc~ons of a complex variable is the in- 
variance of the contour of an analytic function relative to the integration path. 
This property permits the integration contour to be deformed in the domain of 
analyticity without changing the value of the integral, It is of interest to seek 
similar invariant integrals in other problems of mathematical physics, not re- 
ducing to the planar problems of potential theory, 

In this paper a system of energy integrals ( I’ -integrals) has been construct- 
ed for a continuous medium with arbitrary rheological and ele~tromaguet~c pro- 
perties (Sect. I). Next, a general theory is proposed for the motion of the sing- 
ularities based on the invariant r*- integrals (Sect, 2). The following questions 
are examined as s ome special cases of this theory: breakdown of dielectrics by 
an electric field (motion of charges and currents, Sect, 3); drag of a body in 
ideal incompressible fluid flow (motion of dipoles, vortices and sinks in an ideal 
fluid, Sect. 4); motion of cracks and dislocations in elastic bodies (Sect. 5) etc. 

1 . Iavarfant I?-fntsgrafr in the wut of an electromagnetto de= 
form a b 1 e me d i u m , Let us consider a def~r~ble consul medium located in 
an electromagnetic field in the most general case of interaction of field and medium 

(the electromagnetic field causes a deformation of the medium and, conversly, a de- 
formation of the medium germrates an electromagnetic field). The state of an electron 
magnetic deformable medium is characterized by the field vectoraE,B,D,B,the dis- 
placement vector u and the stress and strain tensorsasrrand eik. The following equal 
tions holds 

Maxwell’s equations 
(1.1) 
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kinematic conditions for small deformations 

2Eij CZ Ui,j + Uj,i 

0.3) 

local energy conservation law 

u’ = qi,i + E’iDt’ + HiBi’ + oi_#i:’ 
U.4) 

Here J is t he current density vector, P is the charge density, 6 is the density of the 
medium, zi are fixed rectangular Cartesian coordinates, t is time, q is the uncom- 
pensated heat flow vector, u’ is the rate of change of the internal energy of the med- 

ium in a unit volume;‘the dot denotes the total time derivative; e1s3 = es,, = Esra = 

1,e132= e321 = eel3 = -1,all other Eijr equal zero. For simplicity, the deforma- 

tions of the medium are assumed small. (What follows can be generalized to finite de- 

formations as welLI 

All functions occurring in these eq.rations are assumed to be continuously differenti- 

able the requisite number of times, with the exception of singular points, singular lines 
and singular surfaces on which these equations become meaningless. By Z we denote 
a certain surface in the X&F3 -space. We consider the following integrals over 

surface Z : 
r”_integrals of the first kind 

1 
rr = 

\K 
3 -t_ F + + Gui’ui’ 

) 

U. 5) 
nk -I- 

(Diir + BiHa - a#j. kc 4i, k) ‘i] d2 

I’- integrals of the second kind 

r-integrals of the third kind 

(DiEk f &HE - %jUj, k - Qi, k),lm% 
1 
id2 

(1.6) 

(1.71 

etc. Here 3 and F denote the;;lowine notentials? 3 = u - EIDS - HiBt 

F=- 
sl 

* + pEi j- 8$j&fjBk dsi 
1 

(Lf9 

( 
gfad~= -Z&.--+-JXB 

Pi = EijkBjDg (P = B x Df 
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In formulas (1.5~(1.8) the charge density p is taken as constant. We adopt the us- 
ual rules of index notation for summation and differentiation (for example, UPHELD’ I 

nta + Us’s f Uia, Uj,k = 8Uj 1 axk * etc.). It can be shown that the equality 

rot $- 
( +PE+JxB)=o 

holds on the basis of EC& (2.1) if *f~ = con&. The following theorem holds being an 
analog of the Cauchy theorem for the given physical system. 

Theo r e m 1. J., If: a) the surface Z is closed; b) all functions involw~! in Eqs. 
(2.1)-(2.4) are differentiable everywhere in a domain V, surrounded by contour ): ; 
c) p = con& and 8 = con& everywhere in domain V, then the I’ -integrals of 
any kind equal zero. 

We prove this theorem at first for r -integrals of the fiit kind, We transform 
the surface integml(l.5) into a volume integral 

(1.9) 

It can be shown that the following equation 
(1.10) 

stems from the local energy conservation law (1.4). Now we transform the integrand 
in formula (1.9) using formulas (1. l)-(1.3). (1.8) and (1.10). We obtain 

(1.11) 

3 f F $- -L& &*rQ’), k + (L)$k + &ffk - $jUj, k - pi, k), i = 

Di (Eat, i - Ei, 8) + Bi (Hk, i - Hi, k) - ekij + (BiDj) - 

EkijJiBj + GUi’Ui, k - (UijUi, k), j f OijlQj, k = 

[Di (Ek, J - ES, k) + 8kijDj%n~m, nI + 

i& (ffk, i - Hi, k) - Ek~jBiEj~~H~~ nl f 

8kij (BiJj - BjJi) + ~5, 8 (6Ui” - Gij, j) = 0 

Here in the transformations we allowed for the following identity 

~ki$%mn = skmsjrn - sknasjs 

(Sj, = 1 npE j = n; 6j, = 0 IIpE j =$= n) 

and for the skew-symmetry of akij. 
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The theorem has been proved for I’ -integrals of the first kind. Ob~~sly, from the 
proof presented it also ~OUOWS that it is valid for r-integrals of any kind, since their 
integrands in the transformed volume integrals are certain derivatives with respect to 
the mxdinate-s of expression (1.11). The following theorems on the invariance of r 
-integrals ensue immediately from the theorem proved, 

Theorem 1.2. I‘ -integrals do not changer their values along any closed SW 
face 2, surr~nd~g a singular point, a singular line or a singular surface, The surface 

B can be arbitrarily deformed without changing the values of the r -integrals, if 
in the deformation the surface z does not intersect a singular point, a singular line 
or a singular surface. 

Theorem 1.3. If a nonclosed surface Z is bounded by a spatial contour L, 
then the I’ -integrals do not change their values under any deformation of the surface 

x if: a) contour L is fixed, b) in the deformation the surface 2 does not inter- 
sect a singular point, a singular line or a singular surface. 

Strictly speaking, the Theorems 1. l- 1.3 and their proof are valid onlv for revers- 
ible, quasistatic (nondissipative) systems, as well as(for k = 2 = m = - . . = 1) for 
steady-state processes in the moving coordinate system 2:. = x ,. - Vt,j $1 for any 
arbitrary nonreversible (dissipative) system. However the theorem can be applied in oth- 
er cases with some additional gumptions (for details see Cherepanov, G. P, I Mechan- 
ics of Brittle Fracture, McGraw-Hill Inc., N. Y., 1978). 

The results obtained earlier (see [l]) for a deformable medium in the absence of an 
electromagnetic field are derived from this as obvious special cases when E - 0, D 
= 0, H = 0, B = 0. 

91, General theory of motion of ~i~~ul&~~t~e~. Let us consider 
an isolated singular point 0 inside some domain Tr: by definitio& all the unknown 
functions are differentiable everywhere in the domain V, except at the point 0, at 
least some of them become infinite. Being infinite has no physical meaning and indica- 
tes that the mathematical theory describing the behavior of the given physical system 
is inaccurate. Figuratively speaking, all the errors and deviations of this theory from 
reality are concentrated at the singular points. The value of the integral ri does not 
depend upon the choice of the closed contour 2 (if it only surrounds point 0 and lies 
in domain V ). In particular as 2 we can take a sphere of arbitrarily small radius 
with center at point 0, 

Let us assume for t > t3 the singular point 0 starts to move in space with 
velocity v (the s tate of point 0 up to the instant t = to is of no significance), 
We select a moving system of Cartesian coordinates x~‘xs’xs~ with center at point 

0. in the moving coordinates all r -integrals preserve their form if we make the 
change Xi 3 Xi' and Ui’ --t Ui’ - Vi; all the theorems in Sect. 1 remain val- 
id for the surface 2 (a small sphere, for instance) in the moving space 051)xs~xs’ . 
AS the singular point moves by the distance dr = vdt , the external field (described 
within the framework of the given theory) does the work dA. , The magnitude of this 
work is connected with I’ -integrals of the first kind in the following way: 

d_4 = ri&i (dzi = aidt) (2.1) 

of I’i = ad/ax,. The quantity I’s has the dimension of a force. Thus, the 
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physical meaning of a I’ -integral of the first kind is the following: the magnitude 
of ri equals the irreversible work of the external field under the motion of a singu- 

lar point by a unit of length along xi. 
The energy dissipation rate at the singular point is 

A’ = r*n,i (2.2) 
The question is, for what values ri of the energy flux and in which directions does 
the motion of the singular point commence? We answer this question using the tools of 

thermodynamics. We apply two basic approaches. 
A. We assume that in the three-dimensional space (r,, rs, rs) there exists a 

surface 8 (r,, rs, r,) = 0, separating the whole space into two domains: an in- 

terior one and an exterior one. If a point (r,, rs, rs) is in the interior domain, 

then the singular point in the physical space does not move; as soon as a point!(r,, ra, 

rs) passes onto the surface 8, the motion of the singular point in the physical 

space begins; the exterior domain is inaccessible. In this case the velocity of the sing- 
ular point is determined from the maximum principle for the energy dissipation rate, 
which leads to the following expression: 

Vi = h i?S/dFi (2.3) 

where h is some unknown function. Expression (2.3) determines the direction of the 
motion of the singular point. 

This version of the construction of the theory is analogous to the theory of ideal 
plasticity; formula (2.3) is analogous to the associated flow rule. In caser, = rs -0 

with r1 < rrC - , the singular point is stationary; it starts its motion when l?r = I‘,. 

B. We assume that a dissipation function D (I?,, IYs, r,). exists, being a ho- 

mogeneous function of first degree of its arguments. In this case, in accord with (2.2) 
we have vi = amar, 

(2.4) 
This version of the construction of the theory is analogous to the theory of nonlinearly- 

viscous bodies. In this case the motion of the singular point takes place for arbitrary 

values 0f r,, ra, rs. 
More complex synthetic models are possible for the motion of the singular point 

in physical space, combining the limit state and the viscous flow. The functions 8 
and D are subject to determination from experimental data, or else from structur- 
al theory revealing the nature of the singular point. In the simplest and frequently en- 
countered case when rs = I’a = 0, and v, = a, = O,, we obviously have 

vl = f (r,) (2.5) 
Here the function f (rr) is determined from experiment or else from structural physi- 
cal theory. 

Let us now consider some point 0 on a singular line. We select a local coordin- 
ate system with center at point 0, and we direct the XS -axis along the line. For 

t > to let the singular line begin to move in someneighbourhood of point O 
in space with velocity V (VI, us, 0). Having taken as Z some cylindrical surface 
whose axisis the singular line, we can show that formulas (2.1) and (2.2) are valid in 
the case given for i = 1, 2, ; also do and ri are line densities of the corres- 
ponding quantities at point 0 (i.e., are referred to a unit length of the singular line). 
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The dimension of rx is that of force divided by length, To determine the motion of 
the singular line, we can bring in the same model as before (in particular, model (2,3)- 

(2.5) for the corresponding cases with i = 1 , 2). 
Finally, we consider a singular surface (usually this is a surface of discontinuity on 

which at least some of the unknown functions undergo a jump). We select a local coor- 
dinate system with center at some point 0 on the surface of discontinuity and we dir- 
ect the 5 -axis along the normal to the surface. For r> co let the singular sur- 
face move in some neighbourhood of point 0 in space with normal velocity %. The 

formula d-4 = lYldtl, is valid here, while the quantities dA and lYl are surface 
densities at the tloint 0 (i. e., 

dimension of rr 
are referred to a unit area of the singular surface). The 

is that of force divided by length squared. The general theory of mo- 
tion of a singular surface is completely laid out in formula (2.5); in the simplest case 

we can take I?1 = D, where D is some constant of the material (as in explosion 

theory, see [11). 

Invariant I‘ -integrals yield a powerful technique for the construction of new phy- 

sical theories and for the unification of old ones, 

3. Electrical breakdown, Let us consider an electric field in vacuum 

or in a dielectric. In this case 

J = 0, p = 0, 4i = 0, Di = ~oL;;(iy Bi z 0, Hi = 0, ~2 z C (3.1) 

where EO is the dielectric constant of vacuum or of the dielectric (depending on the 
system of units). According to (1.5) the invariant I? -integrals of the first kind in this 

Maxwell’s equations reduce to 

Ei =z - Cp, i, Cp, ii = 0 (3.3) 

Let us consider the fundamental forms of singularities. Everywhere in what follows, 
as a rule, the cumbersome calculations of the invariant l’ -integrals are omitted and 

only the final result is presented, 
Point charge in the field. The field in the neighbourhood of a point char- 

ge at the origin has the form 

cp=e__ E+oXit Ei = $ 
(3.4) 

4n&$ 
o s + Eio (r2 = xisij 

Here the first term is the self-field of the charge and the second term is the external 

field (the succeeding terms of the expansion are unessential). In this case 

rk 2 e&o (3.5) 

Thus, here the rk are the components of the force with which the external field acts 
on the charge (if this charge is displaced by a unit of length along So , the energy r, 

is dissipated), 
Dioole in an external field. Let the field have the form 

(3.6) 
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Here “z, are the components of the dipole moment and &a and C&k are certain 
constants; the first term is the self-field of the dipole and the second 2nd third terms 
represent the external field (the succeeding terms of the expansion are unessential). 
In this case we have 

l-r = 2m& 
(3.7) 

Consequently, the components rg of the force with which the externai field acts on 
the dipole are determined by the dipole moment and the derivatives of the strength 
of the external field at the origin. In the derivation of (3, ?I we made essential use 
of the assumption that the characteristic structural length of the dipole is small in com- 
parison with the radius t of sphere 2. If the dipole is displaced by a unit of length 
along zk the energy rr is dissipated, A multipole of any order can be analyzed com- 
pletely analogously. 

Towards a theory of lightning (of discharge), Let some probe 
(which is in the form of a thin diekctric rod) carry a charge e at its endpoint. 
We place the endpoint of the rod in an external field of strength E (in the ab- 
sence of charge e). The question &: under what conditions does a discharge (light- 
ning) occur, i.e., the charge leaves the probe? On the basis of the general theory 
of motion of sin~lariti~ (Sect, 2) the answer to this question is the following: when 

e 1 E 1 < I’, , a discharge does not occur, while the inequality e 1 E J > J’, is 
impossible, i, e., the condition for the discharge is 

en (El2 + E,2 + Es2) = rc2 (3.3) 

Here r, is some local constant of the endpoint probe, characterizing the electricaf- 
strength properties of the surrounding medium, of the probe and of their contact, as 
well as the geometry nf the endpoint probe. For a given probe and a given external 
medium the constant PC can be determined from one experiment of the discharge 
with a given charge in a given field E . In deriving condition (3.8) from (2.3), we 
assumed that the external medium in the neighborhood of the endpoint probe is isotop- 
ic with respect to its resistance to ihe discharge, i, e., all directions are equivalent. 
From this assumption it follows that the limit state surface 8 (PI, rs, rsj in 
f2.3) is a sphere. (This argument relates also to the general case of the singular points 
of the field (Sect, Z).) Hence follows (3.8). In accord with (2,3), the direction of the 
discharge in this case coincides with the direction of the vector E. The velocity of 
motion of spherical lightning is negligibly small in comparison with the velocity of 
line lightning, Therefore, we can assume that spherical lightning is some multipole 
whose structure is as yet uncoil 

L i n e c ha r g e . Suppose that a charge is distributed uniformly along the line 
21 = Ith; = 0 with density q. The field in the neighborho~ of this line has 
the form 

Consequentlyr the rk again are the components of the force with which the external 
field acts on a unit of length of the line charge. 
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‘Ortex line* The field close to the vortex 21 = ;cs = 0 (solenoidal 
coil) has the form 

Here u, is the circulation of vector E of the field ( ~7 = & is the Vector of 
the vortex). In this case 

r =: rli -i- r,j = I?,, (w x &,) (3.9) 

Thus, a force I’, defined by the formula (3.9) acts on the vortex line. A vortex line 

corresponds to the presence of a concentrated magnetic flux wtk of vector B along 
the 2s -axis (in fte core of the coil). If in the case of a line charge with 21 = 
Zs = U, considered above, the observer is moving along the 5s -axis at a constant 

velocity v , then he sees only the magnetic field 

HI=: -$$+HIo, Ha=+- H,, 

=+k,J- 
0 - #- v, Ho = Hloi + H,,jf 0 

where SO is the area of the cross section of the line charge, In this case 

r = T,i + r,j = p. (J x Ho) 
(3.10) 

where Ho is the external field of vector 3t4 on the $a -axis in the absence of current 

J, and PO is the magnetic permeability of the medium. Formula (3.10) is found 
from the expression for r, in a magnetic field; this expression can be obtained from 

formula (3.2) by replacing Et by Ni and 8, by PO (where Bi = &Hi). 
All the results, obtained in Sect.3, regarding the computation of forces and energy 

dissipation for the singular&ties with the aid of invariant 1’ -integrals generalize easil- 
y to bodies of arbitrary form and co~ec~vity if their typical linear dimensions are small 

in comparison with the radius of the sphere or cylinder 2. Otherwise, it is necessary 

to apply the general formula for r -integrals (for example, formula (3.2) in an electro- 
static field), where the surface of the body can be taken as 2 . 

Lifting force in an electrostatic field. Let us consider a homogene- 
ous electrostatic field in a plane condenser. In this field let there be a cylindrical body 
with a cross-section of the type of a foukowski profile or a turbine blade (the chord of 
the profile is inclined at some small angle to the direction of the tension vector). We 
assume that the body material is an ideal insulator. Then around the profile a vortex 

field of vector E arises and a lifting force r, determined by formula (3.9) acts on 

the profile (see Fig. 1). The magnitude&the curl W can be determined from the Coti- 

ition of boundedness of vector E at the sharp edge of the profile, This effect obtains 
a~ well for nonideal dielectrics (however, to a lesser extent). In principle, it can be 
used for a direct transformation of the electrostatic energy of the field into mechanical 
energy energy of rotation of a turbine, if we use a lattice (grid) of profile-shaped blades 
(as in a hydroturbine) in a sufficiently strong field E . A lifting force of the same or- 
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igin can act on uncharged oblate particle in an electric or magnetic field. 

Thin dielectric sheet in an electrostatic field. Let a thin plane 
sheet made of an ideal dielectric be placed in a plane condenser parallel to its plates. 

In this case the edge of the sheet is a singular line of the field E. We introduce the 
Cartesian coordinates X1$ with origin at some point 0 of the edge of the sheet 
where xz is normal to the sheet and x1 is normal to its edge contour (Fig. 2). The 
field close to the edge of the sheet is 

Here K is the field intensity coefficient at the given point 0; it is determined from 
the solution of the problem as a whole. In this case we find 

Consequently, a concentrated longitudinal tensile force of intensity rl is applied to 
the edge of the dielectric sheet (as though force lines of the field were attracting the 
edge of the sheet to themselves). In accord with Sect. 2 the collapse of the sheet starts 
at some critical value of coefficient K. The field energy decreases as the edge of 
the sheet moves in the condenser. 

All the models constructed can be used for a theoretical description of diverse phen- 

omena of breakdown in strong electric and magnetic fields (discharge of condensers, 
of the insulation in conductors, coils, etc.). The methods used for computing the for- 
ces acting on charged bodies, close to the method of Maxwell were already developed 



in the past century, ~ubsequen~y* this method was forgotten (for instance, it is not pre- 
sented in [Zl), while a simplephysic~ formalism, based on a representation of interac- 
tion energy, came to be applied for computing the forces, This formalism consists in 
the rejection of the infinite self-energy of a point source when calculating the energy 
of the system (the force is defined as the gradient of the energy of the system). The para- 
dox of the divergence of the energy (9 under such an approach is logically insuperable. 
As we see the application of invariant I’ -integrals enables us, in particular, logically 
and correctly to resolve the paradox of the divergence of tbe energy and to give a rigor- 
ous justifica~on of the forrna~~ indicated. 

4, Invariant J? -integrals in hydrodynamics. We limit ourselves 
to the analysis of steady-state fiow of an ideal incompressible weightless liquid, describ- 
ed by the equations 

Herecp, VI and pare the flow potential, the velocity components and the pressure in 
the liquid, and pO is the pressure at a critical point of the flow. In this case the in- 
variant F -integrals are 

r -+\i- 
t4 2) 

h^=” V.#i?&k + 2UilzjLtfi) dX 
ri 

etc. It is not difficult to see that the quantities l?r equal the corresponding components 
of the force acting on a body placed inside a closed surface 2 in the flow of the liqu- 
id (for undetached flow). 

Let us consider some examples* 
s o u r c e i n Ii qu i d f 1 o w I Let the flow field be formed by superimp~ing a sour- 

ce field gV on the unperturbed flow 
~ZFi 

“i =~+vio (r2=xixi, i=1,2, a) 

In this case we have 

I-,=--s 4VVkO 6 = 1, 2, 3) 

Thus, a source moves against the flow and a sink with the flow, 
Dipole in liquid flow. Let the flow field have the following form: 

miXi 

'p="Jp-- v~o"~-diLXiXk 

Here the first term is the self-field of the dipole with the moment (RQ* mpl ms), and 

*) To resolve this paradox for an electton, knead L&hit8 intro&e the amply 
of an infinite negative mass of an electron of nonel~troma~e~c origin (see p, 123 in [Z]). 
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the second and third terms represent the unperturbed external field, In this case we have 

rr = 2 S 

e, , 

dik = 0, we obtain I& zz 0 {the d*Alemebert- Euler paradox). In models 
with a reverse flow (of the type of the Efros-Gilbarg-Ross model) the body experiences 
a drag which can be found with’the aid of I’ -integrals. By deforming the closed sur- 
face z in integral (4.2) from a sphere of infinite radius into the frontal surface of 
the body plus the surface of the cavity, we obtain the following expression for the drag 

F of an axisymmetric body under a stalled axisymmetric cavitational flow with re- 
verse flow: 

Here P, and vclll are the pressure and the velocity of the unperturbed flow, pc is the 

pressure in the cavity, sJ is the asymptotic cross section of the reverse flow and Sf 
is the frontal section of the body. With the aid of inva~ant I’ -integrals we can al- 
so obtain a number of known classical results (for example, the Levi-Civita formula 
for the flow past a body with an infinite cavity, the thickness of the jet in a Borda or- 
ifice, the Cisotti effect, etc.), 

Vortex in a liquid flow, Let the flow field have the form 

Here the first term is the self-field of the vortex 21 = 2~ = 0, the second term is 
the unperturbed flow and w is the circulation of the vector V. In this case 

(4.5) 

By deforming the contour 2 in the r -integral (4. Z), we obtain the following re- 
sult: under a circulational flow past a oylindrical body of arbitrary section, the lift- 
ing force is determined by formula (4.5) (Joukowskif theorem), 

6. Theory of cracks and dislocations in elastic bodies. 
The invariant I’ -integrals of the nonlinear theory of elasticity have the form 
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etc. Let us consider the basic types of singularities of an elastic field. 
Concentrated force on the free boundar_y of a halfspace. Let 

a homogeneous isotropic lineaxly elastic halfspace 5s > 0 be subjected to a con- 
centrated force (pi, 0, 0), applied at the origin. The elastic field in the neighbor- 
hood of the origin has the following form: 

(5.3) 

Here (%, Us, r&,)is the displacement vector, /.J is the shear modulus, V is the 
Poisson’s ratio, aik are constants determining the unperturbed external field* The first 
term with factor P,is the self-field of the concentrated force. In this case we have(9 

I5*4) 

8(1 -i_ 2v) 
r1= - &7{u11[~+ 5(1_2v) + 

%+?$I+ 

rl - v) a33 + V%a - +h + aal) (& + vj} 

r PPl2 
3 = &p(1--2V) 

Concentrated line force inside a body. Let the elastic body be a 
thin Plate located in the plane x3 = @. A longitudinal concentrated force (pi, Pa) 
per unit of the thickness of the plate is applied to the plate at the origin. Let the elas- 
tic field in terms of the complex Kolosov-Muskhelishvili potentials ‘p (z)and $ (2) 
have the form 

q(z) =t -- 2:(:::) In z + (A, -i- iAz) z (5.5) 

9(r) = 
x(P,-iP ) 

’ 
2s (1 i- x) 

ln 2 -t_ (B, _i- iB,) 2 

2 = x1 + ix2, x = 
3-v 

- 
I-l-v > 

*l A. S. Bykovtsev computed (5.4) 
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Here Ai and Bi are real constants determining the external unperturbed field; the 
first term is the self-field of the concentrated force. In this case we have (“) 

(5.6) 
ri L_ * {[(2 - 4Y) Al - II,] P, + [(4 - iv) Aa + Ba] Pa) 

rz = ~([(2--4~)A~+R~]P~i_[-4(l--)A~_1--B~]Z-’,} 

Theory of the strength of rivets. Let a thin plate be attached at the 
origin to another elastic body (a rod, a plate or a massive body). This joining of elas- 
tic bodies shall be called riveting for concreteness; however, we should bear in mind 
that the theory being proposed refers to any technological operation or method of attach- 
ment as long as the size of the rivet is small in comparison with the typical dimensions 
of the body. We assume that the rivet has sufficient strength so that the fracture (or lim- 
it state) under ~ffici~tly large loads takes place close to the rivet in the plate. On the 
basis of the general theory in Sect. 2 the condition for the fracture is the following (here 
we used the condition of isotropy with respect to s~eng~~ 

r? + r,32 = I?,” 
(5.7) 

where r, and rs are given by (5.6) and r, is some local constant depending on 
the construction of the rivet and method of attachment and on the local strength of the 
plate. The quantity r, is independent of the external field, the geometry of the plate, 
the loads, etc. ; all’these factors enter into the left-hand side of (5.7.). The value of 

rC mu& be determined experimentally. An analogous theory can be developed for 
the fracture of the attachment to a massive body, by using the formula (5.6) and the 
general theory in Sect 2. 

Linear dislocation. Let an elastic body, finding itself in a state of a plane 
state of stress or strain, contain a dislocation along the line 5i = 2a = 0. Let 
the elastic field close to the origin of the plane 21x2 be 

I” (*l+ ibd q@) = ni(x3_1) 
ln z + (Al -j- iA4 2 

SW = - . , pJgb&-L’:; In 2 + ( BI -+- i&I 2 

(2 = r1+ is,) 

Here (be &a) is the Burgers dislocation vector, u is the shear modulus: the first 
term is the self-field of the dislocation and the second is the unperturbed external field. 
In this case we have 

rz = b,& + b&A, + &), rs = b,(--2A, + &) - b@, 
(5.9) 

The quantitites Al, B,, Ba have the following physicat meaning 

A, = l/‘( (~11: -j- (Jo;), B, = ‘i, (ct; - ax:), B, = axa” 
(5. IO) 

“) L. A. Kipnis computed (5.6) 
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Here oil’=‘, also and 02ao are the stresses of the unperturbed external field at the ori- 
gin. Using (5. lo), formula (5.9) can be written as 

(5.11) 

This is the well-known Peach-Kochler formula for the configurational force acting on 
a dislocation. Dislocation theory is based on it. 

In accord with the general theory in Sect. 2, the motion of a dislocation takes place 
as soon as the absolute value of vector r, equal to I/mi, reaches a critical val- 

ue r. lying on the limit polar 8 (r,,I’,) (which is found from experiment). In case 
of isotropy the polar is the circumference of a circle and the magnitude of r, does 
not depend upon the direction of motion of the dislocation. However, if the direction 

of the motion of the dislocation is known from experiment, then the magnitude of rc 
equals the dissipation of the field energy as the dislocation moves in the direction in- 
dicated by a unit of length (this mag~~de is determined by experiment or from struc- 

ture theory). The kinetics of the motion of dislocation in time under a constant extern- 

al load must be described within the framework of the dependence of the vector v 

on the vector I? (see Sect. 2). 
C 1 e a v age c r a c ks . Let the front of a crack in an elastic body coincide with 

the line 2, = x2 = 0. The edges of the crack along ~a = 0 snd XI < 0 are free 

of external loads (cleavage crack), The conditions of plane strain or of plane state of 
stress are assumed. Let an elastic field close to the crack front have, in the complex 

potentials @ (2) and I;2 (z) , the form 

2a,(z)+ c-q(z) = K,, Q(Z) = iKgz 

CL) 

V’ZZ 
_ 

(z = x1 + ixz) 

Here Kr and Krr are stress intensity factors, In this case 

The theory of crack development is obtained from the general theory of motion of singu- 
larities (Sect. 2) as a special case. Invariant f -integrals have been used also for de- 

scribing the motion of a singular fracture surface in the theory of the effect of explosions 

in brittle bodies [l]. 
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